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Abstract—A new robust recursive least-squares (RLS) adaptive
filtering algorithm that uses a priori error-dependent weights
is proposed. Robustness against impulsive noise is achieved by
choosing the weights on the basis of the � norms of the cross-
correlation vector and the input-signal autocorrelation matrix.
The proposed algorithm also uses a variable forgetting factor that
leads to fast tracking. Simulation results show that the proposed
algorithm offers improved robustness as well as better tracking
compared to the conventional RLS and recursive least-M estimate
adaptation algorithms.

Index Terms—Adaptive filters, RLS adaptation algorithms, ro-
bust adaptation algorithms.

I. INTRODUCTION

T HE convergence performance of adaptive filters depends
critically on the randomness of the input-desired signal

pairs [1]. Impulsive disturbances or noise in the input-desired
signal pairs can cause the performance of adaptive filters to de-
teriorate [2]. Robustness in adaptive filters in impulsive-noise
environments is achieved in a number of ways [2]. In [3]–[5],
adaptive-filter robustness is considered as insensitivity to im-
pulsive noise and in [6] it is deemed to be the capability of an
adaptive filter to reconverge to the steady-state solution at the
same rate of convergence as before. The robust algorithms in [3],
[4] use the Hampel three-part redescending M-estimate objec-
tive function and that in [5] uses the Huber two-part M-estimate
objective function. In [3]–[5], the median absolute deviation
(MAD) [7] is used to estimate the variance of the error signal in
order to determine appropriate threshold values. The amplitude
of the error signal is then compared with these thresholds values
to detect the presence of impulsive noise and whenever such
noise is present, the algorithm either reduces the learning rate
significantly or discards the error signal completely in the coef-
ficient-vector update equation. In [6], the instantaneous power
of the weighted error signal is lowpass filtered and then used to
switch the step size of the algorithm between two levels one of
which suppresses the error signal corrupted by impulsive noise
during the adaptation of the coefficient vector. The robust al-
gorithms in [4]–[6] belong to the recursive least-squares (RLS)
family and hence they converge significantly faster than algo-
rithms of the steepest-descent family [1].
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In this paper, we propose a new robust RLS adaptive-filtering
algorithm that yields an optimal solution of the weighted least-
squares optimization problem. The proposed algorithm is robust
with respect to impulsive noise as well as long bursts of impul-
sive noise in the sense that it converges back to the steady state
much faster than during the initial convergence. The proposed
algorithm also tracks sudden system disturbances. Simulation
results show that the proposed algorithm achieves improved ro-
bustness and better tracking as compared to the conventional
RLS and recursive least-M estimate (RLM) algorithms reported
in [4]. The paper is organized as follows. In Section II, the pro-
posed robust RLS algorithm is described. In Section III simula-
tion results are presented and finally conclusions are drawn in
Section IV.

II. PROPOSED ROBUST RLS ALGORITHM

Two slightly different versions of the proposed robust RLS
algorithm are possible as detailed below, one for stationary and
the other for nonstationary environments.

A. Robust RLS Algorithm for Stationary Environments

Weighted least-squares algorithms obtain the optimal co-
efficient vector at iteration by solving the optimization
problem

(1)

where is the desired signal, is the input signal vector, and
is a nonnegative weight at iteration . Each of vectors

and is of dimension . The solution of (1) is achieved by
solving the normal equations which are obtained by setting the
gradient of the objective function in (1) with respect to to
zero. The input-signal autocorrelation matrix, , and crosscor-
relation vector, , at iteration are given by

(2)

(3)

where and are of dimensions and , respec-
tively, and . Parameter is a prespecified fixed for-
getting factor and is a nonnegative scalar. The normal equa-
tions of (1) can be expressed in matrix form as

(4)

Using the matrix inversion lemma [1], [2] in (2), we obtain the
update equation of the inverse of the autocorrelation matrix as

(5)
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Now using (5) in (4), the update equation of the coefficient
vector is obtained as

(6)

where

(7)

is the a priori error. In impulsive-noise environments, the
norm of the gain vector, i.e., , given by

(8)

undergoes a sudden increase when is corrupted by impulsive
noise. As a result, the norm of is also increased which
would, in turn, increase the norm of in (4). The effect of
impulsive noise on (3) caused by can be suppressed by im-
posing a time-varying upper bound on the norm of the
gain vector in (8). In other words, we choose such that the
update of the crosscorrelation vector in (3) satisfies the condi-
tion

(9)

Parameter is chosen as

(10)

for all on the basis of extensive simulations. The condition in
(9) is satisfied if is chosen as

(11)

As can be seen, can be greater than unity which would affect
the convergence performance of the adaptive filter. To circum-
vent this problem, we use

(12)

With , the update equations in (5) and (6) become iden-
tical with those of the conventional RLS adaptation algorithm.
The value of given by (12) will also bound the norm of
the gain matrix, i.e., , given by

(13)

As can be seen, for an impulsive-noise corrupted , the
norm of the gain matrix would be significantly reduced. Since
the probability that during the transient state is high
and the convergence of the RLS algorithm is fast, the initial
convergence of the proposed robust RLS algorithm would also
be fast. In addition, the proposed robust RLS algorithm would
work with during steady state as the amplitude of the
error signal, , becomes quite low during steady state. Conse-
quently, the steady-state misalignment of the proposed robust
RLS algorithm would be similar to those of conventional RLS
adaptation algorithms. However, when an impulsive noise-cor-
rupted occurs, we obtain and
which would force the norm of the gain vector in (8) and the

norm of the gain matrix in (13) to be bounded by

and , respectively. As a result, the norm of the
coefficient vector in (4) would also remain bounded as dis-
cussed below.

The norm of the differential-coefficient vector of the con-
ventional RLS algorithm given by

(14)

is obtained as

(15)

by using (6) in (14) with . As can be seen, the norm
of the differential-coefficient vector in the conventional RLS al-
gorithm increases abruptly for an impulsive noise corrupted .
Similarly, the norm of the differential-coefficient vector in
the proposed robust RLS algorithm for the case of an impulsive
noise corrupted error signal, , is obtained by using (11) and
(6) in (14) as

(16)

As can be seen, the norm given by (16) would be much less
than that in (15) since cannot perturb . Although
would become less than one in such a situation, its effect is sig-
nificantly reduced by in (16). It should also be noted that
the duration of would have no effect on (16). In other words,
the proposed robust RLS algorithm would exhibit robust perfor-
mance with respect to a long burst of impulsive noise. Using the
well known vector-norm inequality

(17)

and (16), we note that the norm of the differential-coefficient
vector would also remain bounded and hence the norm of
in the proposed RLS algorithm would also be robust with respect
to the amplitude and duration of the impulsive-noise corrupted

.

B. Robust RLS Algorithm for Nonstationary Environments

The above RRLS algorithm, like other RLS algorithms
cannot track sudden system disturbances as is chosen to be
very close to unity in order to achieve a reduced steady-state
misalignment. To overcome this problem, we use time-varying
parameters and defined as

(18)

(19)

In (18), should be greater than in order to render the
proposed RLS algorithm applicable to nonstationary environ-
ments. Suitable values for and that were found to give
good results in practice are and .
Constant 2.24 is an empirical constant which is chosen to en-
sure that the probability that is of the order of 0.001.
This would ensure that under sudden system disturbances,
would be reduced momentarily and then be quickly returned to
the value in order to maintain the tracking of the algorithm.
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The variances of the error signal, and , in iteration
are estimated as

(20)

(21)

where is a vector of dimension
is a very small positive scalar, , and

; constants and are referred to as memory factors in
the literature. In the proposed algorithm, we use and given
in (18) and (19), respectively, only when .
Otherwise, we use and as given in (12).

If is chosen to be very large, then we would get
during the transient state and, therefore,

the algorithm would work with and as given in (12).
As a result, the transient state would die out quickly in which
case at steady state. On the other hand, for sudden
system disturbances, we would get in
which case the algorithm would work with and given in
(18) and (19), respectively. In such a situation, momentarily
becomes significantly less than as and shortly
afterwards becomes equal to as becomes less than

. As a result, improved tracking is achieved in nonstationary
environments.

C. Discussion

The two versions of the proposed algorithm essentially solve
the minimization problem

(22)

and they can be implemented in terms of the algorithm summa-
rized in Table I.

For stationary environments, the proposed algorithm entails
multiplications and additions per

iteration where is the dimension of the coefficient vector. On
the other hand, for nonstationary environments,

multiplications and additions per iteration
are required. The conventional RLS algorithm requires

multiplications and additions whereas the
RLM algorithm requires multiplications and

additions. Evidently, for values of in excess
of 5, the computational complexity of the proposed robust RLS
algorithm is similar to that of the RLS and RLM algorithms.

III. SIMULATION RESULTS

In this section, the proposed robust RLS (PRRLS) algorithm
is compared with the conventional RLS algorithm and the RLM
algorithm [4] in terms of robustness and tracking in a system
identification application in stationary and nonstationary envi-
ronments. The unknown system was an FIR filter.

The first experiment concerned the case of a stationary envi-
ronment. The coefficient vector of the unknown system, ,
was obtained using MATLAB commands

TABLE I
IMPLEMENTATION OF PROPOSED ROBUST RLS ALGORITHM

and with and . The
input signal was a zero-mean white Gaussian noise signal with
unity variance and was colored by an IIR filter with a single pole
at 0.95. The measurement noise added to the desired signal was
a zero-mean white Gaussian noise signal with variances

and to achieve signal-to-noise ratios (SNRs) of 30
and 60 dB, respectively. The impulsive noise was generated as

where is a Bernoulli process with the probability
that is equal to , i.e., , and

is a zero-mean Gaussian signal with variance
where is the power of the uncorrupted output signal [6]. The
learning curves obtained in 1000 independent trials by using the
conventional RLS and RLM algorithms and the PRRLS algo-
rithm are illustrated in Fig. 1(a)–(b). As can be seen, the RLS
and RLM algorithms are not robust with respect to a long burst
of impulsive noise whereas the PRRLS algorithm is not affected
by the impulsive noise.

The second experiment concerned the case of a nonstationary
environment. The initial algorithm parameters were the same as
those in the first experiment except that the order of the unknown
system was increased to 63 and the variances of the measure-
ment noise were changed to and to achieve SNRs
of 40 and 70 dB, respectively. The impulse response of the
FIR filter was suddenly multiplied by at iteration 1500. The
tracking of the robust algorithms in [3]–[6] was examined using
a similar setting. The learning curves obtained in 1000 indepen-
dent trials by using the conventional RLS and RLM algorithms
and the PRRLS algorithm are illustrated in Fig. 2(a)–(b). As
can be seen, the RLS and RLM algorithms cannot track sudden
system changes whereas the PRRLS algorithm handles sudden
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Fig. 1. Learning curves with � � ��������� ��� � � ��� with � � �� � � � ����, and ��� � � in all algorithms. The parameters for the RLM algorithm
were 	 � �� � � ����� 
 � ������ �� � ������ �� � ���	�� as suggested in [4]. Impulsive noise of duration 
� was added to the desired signal
at iterations 800, 1400, 1800 where � is the sampling period. (a) �� � 
� dB, (b) �� � �� dB.

Fig. 2. Learning curves with  � �� � � � � ����� � � ����� � � ����, for the PRRLS algorithm. Impulsive noise of duration 
� was added to
the desired signal at iterations 700, 1200, 2500. The initial algorithm parameters were set to � � ��������� ��� � � ��� with � � �� , and ��� � � in all
algorithms. (a) �� � �� dB, (b) �� � 	� dB.

system changes successfully and at the same time maintains its
robustness with respect to impulsive noise.

IV. CONCLUSION

A new robust RLS adaptive-filtering algorithm that performs
well in impulsive noise environments has been proposed. The
new algorithm uses the norm of the gain factor of the cross-
correlation vector to achieve robust performance against impul-
sive noise. In addition, the proposed algorithm uses a modified
variance estimator to compute a threshold that is used to obtain
a variable forgetting factor which offers improved tracking.
Simulation results show that the proposed algorithm is robust
against impulsive noise and offers better tracking compared to
the conventional RLS and RLM algorithms.
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